NAME DATE

PARTITIONING CIRCLES AND RECTANGLES

Describe a whole by the number of equal parts including $\mathbf{2}$ halves $\mathbf{3}$ thirds and 4 fourths.
1)

1 sixth	1 sixth	1 sixth
1 sixth	1 sixth	1 sixth

__ sixths = _ whole.
2)

1 ninth	1 ninth	1 ninth
1 ninth	1 ninth	1 ninth
1 ninth	1 ninth	1 ninth

\qquad ninths $=$ \qquad whole.
3)

| 1 fifth |
| :--- | :--- | :--- | :--- | :--- |
| 1 fifth |
| 1 fifth |

\qquad fifths = \qquad whole.
4)

_
fourths = \qquad whole.
5)

\qquad eighths = \qquad whole.

